STAAD.Pro Help

V. EC3 German NA - Column with Axial Load

Calculate the axial and bending capacities and interaction ratios of a column using the German NA to EC3.

Details

The 5 m tall column as a fixed base and is free to translate and rotate at the top. The column is subject to a 25 kN compressive load and moments of 5 kN·m about the X axis and 10 kN·m about the Z axis. The section is an HD320X127, grade S275 steel.

Validation

Bending Capacity

Moment capacity:

M c k d = W p l y f y γ M 0 = 2,149 ( 10 ) 3 275 1.0 ( 10 ) 6 = 591.0  kN·m

The critical moment is given by:

M c r = C 1 π 2 E I ( k L ) 2 { ( k k w ) 2 I w I + ( k L ) 2 G I t π 2 E I + ( C 2 Z g ) 2 C 2 Z g }
where
C1
=
2.578
C2
=
1.554
π 2 E I y k L 2
=
7,477,200
k k w 2 I w I y
=
22,394
k L 2 G I t π 2 E I y
=
23,740
C2Zg
=
1.554×160 = 248.6

Therefore, Mcr = 1,540.6 kN·m

From the German NA, λLT, 0 = 0.4, β = 0.75

So, λ L T = w y f y M c r = 2,149 × 10 3 × 275 1,540.6 × 10 6 = 0.619

H/b = 320/300 = 1.067 < 2. So, from Table 6.5 of Eurocode 3, αLT = 0.34.

From Cl. 6.3.2.3 of Eurocode3:

ФLT = 0.5[1+αLTLT- λLT, 0) + β× λLT2] = 0.5[1 + 0.34×(0.619 - 0.4) +0.75 × 0.6192] = 0.681

So, χ L T = Ф L T + Ф L T 2 - β λ L T 2 - 1 = 0.908

k c = 1 C 1 = 1 2.578 = 0.623 and thus modification factor, f = 1 - 0.5(1 - 0.623)×[1 -2(0.619 - 0.8)2] = 0.824

χ L T , mod = χ L T / f = 0.824 = 1.102 > 1

So, χ L T , mod = 1.0

M B = χ L T w y f y γ M 1 = 1.0 × 2,149 ( 10 ) 3 × 275 1.1 = 537.3  kN·m

Compression Capacity

Critical compressive values:

N cry = π 2 E I y ( k l ) 2 = 7,477  kN
N crz = π 2 E I z ( k l ) 2 = 24,943  kN

Nc,Rd = Agfy / γM0 = 16,130 × 275 / 1.0 (10)-3 = 4,436 kN for a Class 1 section.

Check the flexural buckling resistance per Cl. 6.3.1.1.

Nb,Rd = χ×A×fy / γM1 for a Class 1 section.

Buckling curves for I section are found in Table 6.2. Imperfection factor, ɑ, values are found in Table 6.1.

Along Z

h/b = 1.067 < 2

tf = 20.5 < 100

So, for the z-z axis, use curve "b". Hence, ɑ = 0.34 (EC3 Table 6.2).

λ cz = A × f y N crz = L cr i z × λ 1
where
Lcr
=
5,000 mm
iz
=
138.2 mm
λ1
=
93.9 ε = 93.9 235 f y = 93.9 235 275 = 86.80

Thus, λ cz = 5,000 138.2 × 86.80 = 0.417

ф = 0.5[1+α (λz - 0.2) +λ2)] = 0.624

χ z = 1 ф + ф 2 - λ 2 = 0.919
Compression capacity about Z:

Nb,Rd = χz×A×fy / γM1 = 0.919×16,130×275 / 1.1 = 3,707.5 kN

Along Y

For the y-y axis, use curve "c". Hence, ɑ = 0.49 (EC3 Table 6.2).

λ cz = A × f y N crz = L cr i z × λ 1
where
Lcr
=
5,000 mm
iy
=
75.68 mm
λ1
=
93.9 ε = 93.9 235 f y = 93.9 235 275 = 86.80

Thus, λ cy = 5,000 75.68 × 86.80 = 0.761

ф = 0.5[1+α (λz - 0.2) +λ2)] = 0.827

χ y = 1 ф + ф 2 - λ 2 = 0.687
Compression capacity about Z:

Nb,Rd = χz×A×fy / γM1 = 0.687×16,130×275 / 1.1 = 2,768.6 kN

Thus, the compression capacity, Nb,Rd = 2,768.6 kN

Compression ratio: 25 kN / 2,768.6 kN = 0.009

Critical Axial Loads for Flexure and Flexural Torsional Buckling

From NCCI document SN001a-EN-FU:

N c r , T = 1 i 0 2 G I t + π 2 E I w l T 2
where
i o 2
=
i y 2 + i z 2 + y o 2 + z o 2 ; here y0 = z0 = 0

iy = 75.68 mm and iz = 138.23 mm

= 24,835 mm2

N c r , T = 1 24,835 20,500 × 225.1 ( 10 ) 4 2.6 + π 2 205,000 2.069 ( 10 ) 12 5,000 2 = 13,889  kN
N c r , T F = i 0 2 2 ( i y 2 + i z 2 ) N c r , y + N c r , T - N c r , y + N c r , T 2 - 4 N c r , y N c r , T i y 2 + i z 2 i 0 2
= 1 2 24,943 + 13,889 - 24,943 + 13,889 2 - 4 ( 24,943 ) ( 13,889 ) 1 1 = 13,889  kN

Interaction Check

From Annex B, Table B.3 of EN 1993:1-1:2005,

Wz = Wplz / Welz = 2,149 / 1,926 = 1.116

Wy = Wply / Wely = 939 / 615.9 = 1.525 > 1.5; Wy = 1.5

ψ = 1.0

So, Cmz = 0.6 + 0.4ψ = 1.0

CmLT = Cmz = 1.0

Cmy = 0.6 + 0.4ψ = 1.0

Interaction factors:

K z z = C m z [ 1 + ( λ z - 0.2 ) N E d χ z × N R k × γ M 1 ] = 1 [ 1 + ( 0.422 - 0.2 ) 25 0.917 × 4 , 436 ] = 1.001
K y y = C m y [ 1 + ( 2 λ y - 0.6 ) N E d χ y × N R k × γ M 1 ] = 1 [ 1 + ( 2 × 0.770 - 0.6 ) 25 0.681 × 4 , 436 ] = 1.008
K y z 1 = 0.6 K z z = 0.601
K y z 2 = 1 + 0.1 × λ y C m L T 0.25 N E d χ y × N R k × γ M 1 = 1 - 0.1 × 0.770 ( 1 - 0.25 ) 25 0.681 × 4 , 436 = 0.999

So, Kyz = maximum(Kyz1, Kyz2) = 0.999

Kzy = 0.6×Kyy = 0.6(1.008) = 0.605

Check for Clause 6.3.3-661:

N E d χ Z N R k γ M 1 + K Z Z M z , E d χ L T M z , R k γ M 1 + K z y M y , E d M y , R k γ M 1 = 25 × 1.1 0.9174 × 4,436 + 1.001 10 × 1.1 1.0 × 591 + 0.605 5 × 1.1 258.3 = 0.038

Check for Clause 6.3.3-662:

N E d χ y N R k γ M 1 + K y z M z , E d χ L T M z , R k γ M 1 + K y y M y , E d M y , R k γ M 1 = 25 × 1.1 0.681 × 4,436 + 0.999 10 × 1.1 1.0 × 591 + 1.008 5 × 1.1 258.3 = 0.049

Results

Table 1.
Result Type Reference STAAD.Pro Difference Comments
Moment capacity, Mckd (kN·m) 591.0 591.0 none  
Critical moment, Mcr (kN·m) 1,540.6 1,541.5 negligible  
Bending capacity, MB (kN·m) 537.3 537.2 negligible  
Critical load for torsional buckling, Ncr,T (kN) 13,889 13,898.0 negligible  
Critical load for torsional-flexural buckling, Ncr,TF 13,889 13,898.0 negligible  
Compression interaction, Cl. 6.3.1.1 0.009 0.009 none  
Bending and compression interaction, Cl 6.3.3-661 0.038 0.038 none  
Bending and compression interaction, Cl. 6.3.3-662 0.049 0.049 none  

STAAD.Pro Input

The file C:\Users\Public\Public Documents\STAAD.Pro CONNECT Edition\Samples\ Verification Models\09 Steel Design\Europe\EC3 German NA - Column with Axial Load.std is typically installed with the program.

The following design parameters are used:

  • The German NA is specified using NA 10
  • Fixed support: CMM 2.0
  • Fixed base and free at other end: CMN 0.7
  • Program calculated kc per Table 6.6 of EN 1993-1-1:2005: KC 0
STAAD SPACE
START JOB INFORMATION
ENGINEER DATE 05-Aug-2021
END JOB INFORMATION
INPUT WIDTH 79
UNIT METER KN
JOINT COORDINATES
1 0 0 0; 2 0 5 0;
MEMBER INCIDENCES
1 1 2;
MEMBER PROPERTY EUROPEAN
1 TABLE ST HD320X127
DEFINE MATERIAL START
ISOTROPIC STEEL
E 2.05e+08
POISSON 0.3
DENSITY 76.8195
ALPHA 1.2e-05
DAMP 0.03
END DEFINE MATERIAL
CONSTANTS
MATERIAL STEEL ALL
SUPPORTS
1 FIXED
LOAD 1 LOADTYPE None  TITLE LOAD CASE 1
JOINT LOAD
2 FY -25 MX 5 MZ 10
PERFORM ANALYSIS
PRINT MEMBER PROPERTIES ALL
PARAMETER 1
CODE EN 1993-1-1:2005
NA 10
CMM 2 ALL
FU 295000 ALL
PY 275000 ALL
KC 0 ALL
CMN 0.7 ALL
TRACK 2 ALL
CHECK CODE ALL
FINISH

STAAD.Pro Output

                         STAAD.PRO CODE CHECKING - DIN EN 1993-1-1:2010-12
                         ********************************************
                         NATIONAL ANNEX - DIN EN 1993-1-1/NA:2010-12
 PROGRAM CODE REVISION V1.14 BS_EC3_2005/1
      STAAD SPACE                                              -- PAGE NO.    4
 ALL UNITS ARE - KN   METE (UNLESS OTHERWISE Noted)
 MEMBER     TABLE       RESULT/   CRITICAL COND/     RATIO/     LOADING/
                          FX            MY             MZ       LOCATION
 =======================================================================
       1 ST   HD320X127   (EUROPEAN SECTIONS)
                           PASS     EC-6.3.3-662       0.049         1
                       25.00 C          5.00         -10.00        0.00
 =======================================================================
   MATERIAL DATA                
      Grade of steel           =  USER          
      Modulus of elasticity    =  205 kN/mm2  
      Design Strength  (py)    =  275  N/mm2                         
   SECTION PROPERTIES (units - cm)
      Member Length =    500.00
      Gross Area =  161.30          Net Area =  161.30
                                      z-axis          y-axis
      Moment of inertia        :    30820.004        9239.001
      Plastic modulus          :     2149.000         939.100
      Elastic modulus          :     1926.250         615.933
      Shear Area               :       81.998          51.728
      Radius of gyration       :       13.823           7.568
      Effective Length         :      500.000         500.000
   DESIGN DATA (units - kN,m)   EUROCODE NO.3 /2005
      Section Class            :   CLASS 1     
      Squash Load              :   4435.75
      Axial force/Squash load  :     0.006
      GM0 :  1.00          GM1 :  1.10          GM2 :  1.25
                                      z-axis          y-axis
      Slenderness ratio (KL/r) :         36.2           66.1
      Compression Capacity     :       3707.4         2768.6
      Tension Capacity         :       3426.0         3426.0
      Moment Capacity          :        591.0          258.3
      Reduced Moment Capacity  :        591.0          258.3
      Shear Capacity           :       1301.9          821.3
   BUCKLING CALCULATIONS (units - kN,m)
      Lateral Torsional Buckling Moment       MB =  537.2
      co-efficients C1 & K : C1 =2.578 K =1.0, Effective Length= 5.000
      Lateral Torsional Buckling Curve : Curve b
      Elastic Critical Moment for LTB,               Mcr   =  1541.5
      Compression buckling curves:     z-z:  Curve b   y-y:  Curve c
      Critical Load For Torsional Buckling,          NcrT  = 13898.0
      Critical Load For Torsional-Flexural Buckling, NcrTF = 13898.0
      STAAD SPACE                                              -- PAGE NO.    5
   CRITICAL LOADS FOR EACH CLAUSE CHECK (units- kN,m):
    CLAUSE        RATIO  LOAD     FX       VY      VZ      MZ      MY   
   EC-6.3.1.1     0.009     1    25.0      0.0     0.0   -10.0     5.0
   EC-6.2.9.1     0.020     1    25.0      0.0     0.0   -10.0     5.0
   EC-6.3.3-661   0.038     1    25.0      0.0     0.0   -10.0     5.0
   EC-6.3.3-662   0.049     1    25.0      0.0     0.0   -10.0     5.0
   EC-6.3.2 LTB   0.019     1    25.0      0.0     0.0   -10.0     5.0
    Torsion has not been considered in the design.
                        _________________________
   ************** END OF TABULATED RESULT OF DESIGN **************