STAAD.Pro Help

G.17.4.1.3 Objective of a Pushover Analysis

Pushover analysis is a performance-based analysis that refers to a methodology in which structural criteria are expressed in terms of achieving a performance objective. This is contrasted to the conventional method in which structural criteria are defined by limits on member forces resulting from a prescribed level of applied shear force.

A performance level describes a limiting damage condition which may be considered satisfactory for a giving building and a given ground motion. The limiting condition is described by the physical damage within the building, the threat to life safety of the building’s occupants created by the damage, and the post earthquake serviceability of the building. The basic approach is to improve the probable seismic performance of the building or to otherwise reduce the existing risk to an acceptable level.

Two key elements of a performance-based design procedure are demand and capacity. Demand is the representation of earthquake ground motion or shaking that the building is subjected to. In nonlinear static analysis procedures, demand is represented by an estimation of the displacements or deformations that the structure is expected to undergo. Capacity is a representation of the structure’s ability to resist the seismic demand. The performance is dependent on the manner that the capacity is able to handle the demand. In other words, the structure must have the capacity to resist demands of the earthquake such that the performance of the structure is compatible with the objectives of the design. Performance objective is to obtain a desired level of seismic performance of the building, generally described by specifying maximum allowable (or acceptable) structural or nonstructural damage, for a specified level of seismic hazard.

There are two nonlinear procedures using pushover methods :

  1. Capacity Spectrum Method
  2. Displacement Coefficient Method