STAAD.Pro Help

TR.31.8.3 Mass Model Using Reference Load

Mass type reference loads can be used to create mass model which will be used for all types of analysis, including seismic, response spectrum, time history, and any other dynamic analysis.

The program follows the following logic:

  1. If a reference load type MASS is present, then the mass model is formed by combining all MASS reference loads.
  2. If reference load type MASS is not present, then the mass model is formed by combining all gravity reference loads. Warnings are displayed in the analysis output to alert you to this fact.
  3. If neither reference load types MASS nor gravity are present, then the mass model is formed by combining all DEAD reference loads. If any LIVE reference loads are present, then they will also be combined to this mass model. Warnings are displayed in the analysis output to alert you to this fact.

Mass model will be formed from Gravity or Dead/Live reference loads in case Mass reference load types are not present.

General Format

DEFINE REFERENCE LOADS
LOAD  Ri title 
Load header and items 
LOAD  Rj LOADTYPE MASS title 
Load header and items 
END DEFINE REFERENCE LOADS
DEFINE UBC/1893/… LOAD
ZONE …
LOAD 1 title 
UBC/1893/… LOAD X f1
LOAD 2 title 
UBC/1893/… LOAD Z f2
LOAD 3 title 
SPECTRUM …

The mass model is defined using the LOADTYPE MASS command. This mass model will be used for all types of analysis, including static equivalent, response spectrum, time history, and simply Eigen solution. If the load type MASS is missing and also no mass is defined in the corresponding seismic or dynamic analysis load cases, the program will report error as mass is missing

If a mass model using reference load type MASS is defined and also a seismic weight table is defined in DEFINE UBC/1893/… DEFINITION (or seismic mass is defined as part of a response spectrum or time history loading), the program will simply the later in place of the former for the seismic weight calculation. The program will issue a warning message in the analysis output. Care should be taken so that the mass model is not defined twice.

Example

UNIT FEET KIP 
DEFINE REF LOAD 
LOAD R1 LOADTYPE MASS 
* MASS MODEL 
SELFWEIGHT X 1 
SELFWEIGHT Y 1 
SELFWEIGHT Z 1 
JOINT LOAD 
17 TO 48 FX 2.5 FY 2.5 FZ 2.5 
49 TO 64 FX 1.25 FY 1.25 FZ 1.25 
* 
LOAD R2 
SELFWEIGHT Y -1 
JOINT LOAD 
17 TO 48 FY -2.5 
49 TO 64 FY -1.25 
END DEF REF LOAD 
************************************************************ 
DEFINE UBC LOAD 
ZONE 0.38 I 1 RWX 5.6 RWZ 5.6 STYP 2 CT 0.032 NA 1.3 NV 1.6 
*********************************************************** 
DEFINE TIME HISTORY 
TYPE 1 FORCE 
0.0 -0.0001 0.5 0.0449 1.0 0.2244 1.5 0.2244 2.0 0.6731 2.5 -0.6731 
TYPE 2 ACCELERATION 
0.0 0.001 0.5 -7.721 1.0 -38.61 1.5 -38.61 2.0 -115.82 2.5 115.82 
ARRIVAL TIMES 
0.0 
DAMPING 0.05 
*********************************************************** 
LOAD 1 
UBC LOAD X 0.75 
*********************************************************** 
LOAD 2 
BC LOAD Z 0.75 
*********************************************************** 
LOAD 3 
SPECTRUM CQC X 0.174075 ACC DAMP 0.05 SCALE 32.2 
0.03 1.00 ; 0.05 1.35 ; 0.1 1.95 ; 0.2 2.80 ; 0.5 2.80 ; 1.0 1.60 
*********************************************************** 
LOAD 4 
SPECTRUM CQC Z 0.174075 ACC DAMP 0.05 SCALE 32.2 
0.03 1.00 ; 0.05 1.35 ; 0.1 1.95 ; 0.2 2.80 ; 0.5 2.80 ; 1.0 1.60 
********************************************************** 
LOAD 5 
TIME LOAD 
53 57 37 41 21 25 FX 1 1 
GROUND MOTION X 2 1 
***********************************************************