 # D12.A.6.5 Channel profile

For channel profiles the von Mises stress is checked at 6 locations as shown in the figure below. ## Cross section properties

where
 Ax , Sy , Sz , Ix , Iy , and Iz = taken from the STAAD.Pro database Ay = 2ht, similar as for wide flange profiles Az = 2×(2/3)bt, Ay and Az are not used in code checks e = b×(Iy/Sy) x = h-t y = b-s/2 Cw = $x 2 y 3 t 12 ( 2 x s + 3 y t ) ( x s + 6 y t )$, ref. tab. 21, case 1

## Stress calculations at selected stress points

Point No σx σby σbz τx τy τz
1 $F x A x$ $M y I y ( b − e )$ $M z I z h 2$ $M x I x t$ 0 0
2   0 $M z I z h 2$ $M x I x t$ $F y I z ( b − e ) t h 2 t$ $F z I y 0.5 ( b − e ) 2 t t$
3   $M y I y b 1$ $M z I z h 2$ $M x I x t$ $F y I z ( b − s ) t h 2 t$ $F z I y ( b − s ) t [ 0.5 ( b + s ) − e ] t$
4   $M y I y b 2$ $M z I z h 2$ $M x I x t$ $F y I z ( b − 0.5 s ) t h 2 t$ $F z I y ( b − s 2 ) t [ 0.5 ( b + t 2 ) − e ] t$
5   $M y I y b 2$ $M z I z h 1$ $M x I x s$ $F y I z b t h 2 s$ $F z I y b t ( b 2 − e ) s$
6   $M y I y b 2$ 0 $M x I x s$ $F y I z b t h 2 + 0.5 s h 1 2 s$ 0

The general stress formulation is given in sec. 5.2.f