# V. Bent Cantilever Deflection

Find deflection due to load at the free end of a cantilever plane bent.

## Reference

Kinney, J. S., Indeterminate Structural Analysis, Addison - Wesley Publishing Co., 1957, Page 13, Problem 4 - 38.

## Problem

Find the vertical, horizontal and rotational deflection components of point A.

 E = 30,000 ksi

 I = 200 in4

 A = 10 in2

## Comparison

Table 1. Comparison of results
Deflection right, δx (in) 0.53 0.53056 none
Deflection down, δy (in) 1.16 -1.17109 <1%
Rotation, θ (rad) 0.0049 0.00488 none

The file C:\Users\Public\Public Documents\STAAD.Pro CONNECT Edition\Samples\ Verification Models\01 Beams\Bent Cantilever Deflection.STD is typically installed with the program.

``````STAAD PLANE :A CANTILEVER PLANE BENT
START JOB INFORMATION
ENGINEER DATE 18-Sep-18
END JOB INFORMATION
*
* REFERENCE: INDETERMINATE STRUCTURAL ANALYSIS, KINNEY, 1957,
*    ADISON-WESLEY PUBLISHING CO., PAGE 113, PROBLEM 4-38
*
UNIT FEET KIP
JOINT COORDINATES
1 0 3 0; 2 0 0 0; 3 4 0 0; 4 14 10 0; 5 22 10 0;
MEMBER INCIDENCES
1 1 2; 2 2 3; 3 3 4; 4 4 5;
UNIT INCHES KIP
MEMBER PROPERTY AMERICAN
1 TO 4 PRIS AX 10 IZ 200
DEFINE MATERIAL START
ISOTROPIC MATERIAL1
E 30000
POISSON 0.290909
END DEFINE MATERIAL
CONSTANTS
MATERIAL MATERIAL1 ALL
SUPPORTS
5 FIXED
```   JOINT DISPLACEMENT (INCH RADIANS)    STRUCTURE TYPE = PLANE