STAAD.Pro Help

EX. UK-24 Analysis of a Concrete Block Using Solid Elements

This is an example of the analysis of a structure modeled using solid finite elements. This example also illustrates the method for applying an enforced displacement on the structure.

This problem is installed with the program by default to C:\Users\Public\Public Documents\STAAD.Pro CONNECT Edition\Samples\Sample Models\UK\UK-24 Analysis of a Concrete Block Using Solid Elements.STD when you install the program.

Example Problem No. 24

    STAAD SPACE
    *EXAMPLE PROBLEM USING SOLID ELEMENTS

Every STAAD input file has to begin with the word STAAD. The word SPACE signifies that the structure is a space frame and the geometry is defined through X, Y, and Z axes. The comment line which begins with an asterisk is an optional title to identify this project.

    UNIT KNS MET

The units for the data that follows are specified above.

    JOINT COORDINATES
      1  0.0  0.0  2.0   4  0.0  3.0  2.0
      5  1.0  0.0  2.0   8  1.0  3.0  2.0
      9  2.0  0.0  2.0  12  2.0  3.0  2.0
     21  0.0  0.0  1.0  24  0.0  3.0  1.0
     25  1.0  0.0  1.0  28  1.0  3.0  1.0
     29  2.0  0.0  1.0  32  2.0  3.0  1.0
     41  0.0  0.0  0.0  44  0.0  3.0  0.0
     45  1.0  0.0  0.0  48  1.0  3.0  0.0
     49  2.0  0.0  0.0  52  2.0  3.0  0.0

The joint number followed by the X, Y, and Z coordinates are specified above. The coordinates of some of those nodes are generated utilizing the fact that they are equally spaced between the extremities.

    ELEMENT INCIDENCES SOLID
      1    1   5   6   2  21  25  26  22   TO   3
      4   21  25  26  22  41  45  46  42   TO   6  1 1
      7    5   9  10   6  25  29  30  26   TO   9  1 1
     10   25  29  30  26  45  49  50  46   TO  12  1 1

The incidences of solid elements are defined above. The word SOLID is used to signify that these are 8-node solid elements as opposed to 3-noded or 4-noded plate elements. Each line contains the data for generating 3 elements. For example, element number 1 is first defined by all of its 8 nodes. Then, increments of 1 to the joint number and 1 to the element number (the defaults) are used for generating incidences for elements 2 and 3. Similarly, incidences of elements 4, 7 and 10 are defined while those of 5, 6, 8, 9, 11 and 12 are generated.

    UNIT MMS
    DEFINE MATERIAL START
    ISOTROPIC STEEL
    E 210
    POISSON 0.25
    DENSITY 7.5e-008
    ALPHA 6e-006
    DAMP 0.03
    TYPE STEEL
    STRENGTH FY 0.25 FU 0.4 RY 1.5 RT 1.2
    END DEFINE MATERIAL
    CONSTANTS
    MATERIAL STEEL ALL
    UNIT METERL

The DEFINE MATERIAL command is used to specify material properties and the CONSTANT is used to assign the material to all members.

    PRINT ELEMENT INFO SOLID LIST 1 TO 5

This command will enable us to obtain, in a tabular form, the details of the incidences and material property values of elements 1 to 5.

    SUPPORTS
    1 5 21 25 29 41 45 49 PINNED
    9 ENFORCED

The above lines contain the data for supports for the model. The ENFORCED support condition is used to declare a point at which an enforced displacement load is applied later (see load case 3).

    LOAD 1
    SELF Y -1.0
    JOINT LOAD
    28 FY -1000.0

The above data describe a static load case. It consists of selfweight loading and a joint load, both in the negative global Y direction.

    LOAD 2
    JOINT LOADS
    2 TO 4 22 TO 24 42 TO 44 FX 100.0

Load case 2 consists of several joint loads acting in the positive global X direction.

    LOAD 3
    SUPPORT DISPLACEMENT
    9 FX 0.0011

Load case 3 consists of an enforced displacement along the global X direction at node 9. The displacement in the other enforced support degrees of freedom will default to zero.

    UNIT POUND FEET
    LOAD 4
    ELEMENT LOAD SOLIDS
    3 6 9 12 FACE 4 PRE GY -500.0

In Load case 4, a pressure load of 500 pounds/sq.ft is applied on Face # 4 of solid elements 3, 6, 9 and 12. Face 4 is defined as shown in the following table :

Face

Number

Surface Joints
f1 f2 f3 f4

1 front

Jt 1

Jt 4

Jt 3

Jt 2

2 bottom

Jt 1

Jt 2

Jt 6

Jt 5

3 left

Jt 1

Jt 5

Jt 8

Jt 4

4 top

Jt 4

Jt 8

Jt 7

Jt 3

5 right

Jt 2

Jt 3

Jt 7

Jt 6

6 back

Jt 5

Jt 6

Jt 7

Jt 8

The above table, and other details of this type of loading can be found in TR.32.3.2 Element Load Specification - Solids .

    UNIT KNS MMS
    LOAD 5
    REPEAT LOAD
    1 1.0 2 1.0 3 1.0 4 1.0

Load case 5 illustrates the technique employed to instruct STAAD to create a load case which consists of data to be assembled from other load cases already specified earlier. We want the program to analyze the structure for loads from cases 1 through 4 acting simultaneously. In other words, the above instruction is the same as the following:

    LOAD 5
    SELF Y -1.0
    JOINT LOAD
    28 FY -1000.0
    2 TO 4 22 TO 24 42 TO 44 FX 100.0
    SUPPORT DISPLACEMENT
    9 FX .0011
    ELEMENT LOAD SOLIDS
    3 6 9 12 FACE 4 PRE GY -500.0
    LOAD COMB 10
    1 1.0 2 1.0

Load case 10 is a combination load case, which combines the effects of cases 1 & 2. While the syntax of this might look very similar to that of the REPEAT LOAD case shown in case 5, there is a fundamental difference. In a REPEAT LOAD case, the program computes the displacements by multiplying the inverted stiffness matrix by the load vector built for the REPEAT LOAD case. But in solving load combination cases, the program merely calculates the end results (displacements, forces, reactions) by gathering up the corresponding values from the individual components of the combination case, factoring them, and then algebraically summing them up. This difference in approach is quite important in that non-linear problems such as PDELTA ANALYSIS, MEMBER TENSION, and MEMBER COMPRESSION situations, changes in support conditions etc. should be handled using REPEAT LOAD cases, not load combination cases.

    PERFORM ANALYSIS PRINT STATICS CHECK

A static equilibrium report, consisting of total applied loading and total support reactions from each primary load case is requested along with the instructions to carry out a linear static analysis.

    PRINT JOINT DISPLACEMENTS LIST 8 9

Global displacements at nodes 8 and 9 are obtained using the above command.

    UNIT KNS METER
    PRINT SUPPORT REACTIONS

Reactions at the supports are obtained using the above command.

    UNIT NEWTON MMS
    PRINT ELEMENT JOINT STRESS SOLID LIST 4 6

This command requests the program to provide the element stress results at the nodes of elements 4 and 6. The results will be printed for all the load cases. The word SOLID is used to signify that these are solid elements as opposed to plate or shell elements.

    FINISH

The STAAD run is terminated.

Input File

STAAD SPACE EXAMPLE PROBLEM USING SOLID ELEMENTS
UNIT KNS MET
JOINT COORDINATES
  1  0.0  0.0  2.0   4  0.0  3.0  2.0
  5  1.0  0.0  2.0   8  1.0  3.0  2.0
  9  2.0  0.0  2.0  12  2.0  3.0  2.0
 21  0.0  0.0  1.0  24  0.0  3.0  1.0
 25  1.0  0.0  1.0  28  1.0  3.0  1.0
 29  2.0  0.0  1.0  32  2.0  3.0  1.0
 41  0.0  0.0  0.0  44  0.0  3.0  0.0
 45  1.0  0.0  0.0  48  1.0  3.0  0.0
 49  2.0  0.0  0.0  52  2.0  3.0  0.0
ELEMENT INCIDENCES SOLID
  1    1   5   6   2  21  25  26  22   TO   3
  4   21  25  26  22  41  45  46  42   TO   6  1 1
  7    5   9  10   6  25  29  30  26   TO   9  1 1
 10   25  29  30  26  45  49  50  46   TO  12  1 1
UNIT MMS
DEFINE MATERIAL START
ISOTROPIC STEEL
E 210
POISSON 0.25
DENSITY 7.5e-008
ALPHA 6e-006
DAMP 0.03
TYPE STEEL
STRENGTH FY 0.25 FU 0.4 RY 1.5 RT 1.2
END DEFINE MATERIAL
CONSTANTS
MATERIAL STEEL ALL
UNIT METER
PRINT ELEMENT INFO SOLID LIST 1 TO 5
SUPPORTS
1  5   21  25  29  41  45  49  PINNED
9 ENFORCED BUT MX MY MZ
LOAD 1
SELF Y -1.0
JOINT LOAD
28 FY -1000.0
LOAD 2
JOINT LOADS
2 TO 4 22 TO 24  42 TO 44 FX 100.0
LOAD 3
SUPPORT DISPLACEMENT
9 FX .0011
UNIT POUND FEET
LOAD 4
ELEMENT LOAD SOLIDS
3 6 9 12 FACE 4 PRE GY -500.0
UNIT KNS MMS
LOAD 5
REPEAT LOAD
1 1.0 2 1.0 3 1.0 4 1.0
LOAD COMB 10
1 1.0 2 1.0
PERFORM ANALYSIS PRINT STAT CHECK
PRINT JOINT DISPLACEMENTS LIST 8 9
UNIT KNS METER
PRINT SUPPORT REACTIONS
UNIT NEWTON MMS
PRINT ELEMENT JOINT STRESS SOLID LIST 4 6
FINISH

STAAD Output File

                                                                  PAGE NO.    1
             ****************************************************        
             *                                                  *        
             *           STAAD.Pro CONNECT Edition              *        
             *           Version  22.04.00.**                   *        
             *           Proprietary Program of                 *        
             *           Bentley Systems, Inc.                  *        
             *           Date=    APR 21, 2020                  *        
             *           Time=    15:40:57                      *        
             *                                                  *        
             *  Licensed to: Bentley Systems Inc                *        
             ****************************************************        
     1. STAAD SPACE EXAMPLE PROBLEM USING SOLID ELEMENTS
INPUT FILE: UK-24 Analysis of a Concrete Block Using Solid Elements.STD
     2. UNIT KNS MET
     3. JOINT COORDINATES
     4. 1  0.0  0.0  2.0   4  0.0  3.0  2.0
     5. 5  1.0  0.0  2.0   8  1.0  3.0  2.0
     6. 9  2.0  0.0  2.0  12  2.0  3.0  2.0
     7. 21  0.0  0.0  1.0  24  0.0  3.0  1.0
     8. 25  1.0  0.0  1.0  28  1.0  3.0  1.0
     9. 29  2.0  0.0  1.0  32  2.0  3.0  1.0
    10. 41  0.0  0.0  0.0  44  0.0  3.0  0.0
    11. 45  1.0  0.0  0.0  48  1.0  3.0  0.0
    12. 49  2.0  0.0  0.0  52  2.0  3.0  0.0
    13. ELEMENT INCIDENCES SOLID
    14. 1    1   5   6   2  21  25  26  22   TO   3
    15. 4   21  25  26  22  41  45  46  42   TO   6  1 1
    16. 7    5   9  10   6  25  29  30  26   TO   9  1 1
    17. 10   25  29  30  26  45  49  50  46   TO  12  1 1
    18. UNIT MMS
    19. DEFINE MATERIAL START
    20. ISOTROPIC STEEL
    21. E 210
    22. POISSON 0.25
    23. DENSITY 7.5E-008
    24. ALPHA 6E-006
    25. DAMP 0.03
    26. TYPE STEEL
    27. STRENGTH FY 0.25 FU 0.4 RY 1.5 RT 1.2
    28. END DEFINE MATERIAL
    29. CONSTANTS
    30. MATERIAL STEEL ALL
    31. UNIT METER
    32. PRINT ELEMENT INFO SOLID LIST 1 TO 5
  ELEMENT  INFO     SOLID    LIST     
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.    2
 ELEMENT NODE-1  NODE-2  NODE-3  NODE-4  NODE-5  NODE-6  NODE-7  NODE-8
       1      1       5       6       2      21      25      26      22
       2      2       6       7       3      22      26      27      23
       3      3       7       8       4      23      27      28      24
       4     21      25      26      22      41      45      46      42
       5     22      26      27      23      42      46      47      43
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.    3
   MATERIAL PROPERTIES.
   --------------------
   ALL UNITS ARE - KNS  METE
 ELEMENT   YOUNG'S MODULUS   MODULUS OF RIGIDITY    DENSITY        ALPHA
       1      2.1000002E+08         0.0000000E+00  7.5000E+01   6.0000E-06
       2      2.1000002E+08         0.0000000E+00  7.5000E+01   6.0000E-06
       3      2.1000002E+08         0.0000000E+00  7.5000E+01   6.0000E-06
       4      2.1000002E+08         0.0000000E+00  7.5000E+01   6.0000E-06
       5      2.1000002E+08         0.0000000E+00  7.5000E+01   6.0000E-06
    33. SUPPORTS
    34. 1  5   21  25  29  41  45  49  PINNED
    35. 9 ENFORCED BUT MX MY MZ
    36. LOAD 1
    37. SELF Y -1.0
    38. JOINT LOAD
    39. 28 FY -1000.0
    40. LOAD 2
    41. JOINT LOADS
    42. 2 TO 4 22 TO 24  42 TO 44 FX 100.0
    43. LOAD 3
    44. SUPPORT DISPLACEMENT
    45. 9 FX .0011
    46. UNIT POUND FEET
    47. LOAD 4
    48. ELEMENT LOAD SOLIDS
    49. 3 6 9 12 FACE 4 PRE GY -500.0
    50. UNIT KNS MMS
    51. LOAD 5
    52. REPEAT LOAD
    53. 1 1.0 2 1.0 3 1.0 4 1.0
    54. LOAD COMB 10
    55. 1 1.0 2 1.0
    56. PERFORM ANALYSIS PRINT STAT CHECK
            P R O B L E M   S T A T I S T I C S
            -----------------------------------
     NUMBER OF JOINTS         36  NUMBER OF MEMBERS       0
     NUMBER OF PLATES          0  NUMBER OF SOLIDS       12
     NUMBER OF SURFACES        0  NUMBER OF SUPPORTS      9
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.    4
           Using 64-bit analysis engine.
           SOLVER USED IS THE IN-CORE ADVANCED MATH SOLVER
   TOTAL      PRIMARY LOAD CASES =     5, TOTAL DEGREES OF FREEDOM =      84
   TOTAL LOAD COMBINATION  CASES =     1  SO FAR.
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.    5
          STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO.     1
           CENTER OF FORCE BASED ON Y FORCES ONLY (MMS ).
         (FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
                        X =  0.999999993E+03
                        Y =  0.228947364E+04
                        Z =  0.999999993E+03
 TOTAL APPLIED LOAD     1 
   ***TOTAL APPLIED LOAD ( KNS  MMS  ) SUMMARY (LOADING     1 )
       SUMMATION FORCE-X =           0.00
       SUMMATION FORCE-Y =       -1900.00
       SUMMATION FORCE-Z =           0.00
      SUMMATION OF MOMENTS AROUND THE ORIGIN-
      MX=     1900000.15  MY=           0.00  MZ=    -1900000.15
 TOTAL REACTION LOAD    1 
   ***TOTAL REACTION LOAD( KNS  MMS  ) SUMMARY (LOADING     1 )
       SUMMATION FORCE-X =           0.00
       SUMMATION FORCE-Y =        1900.00
       SUMMATION FORCE-Z =           0.00
      SUMMATION OF MOMENTS AROUND THE ORIGIN-
      MX=    -1900000.15  MY=          -0.00  MZ=     1900000.15
   MAXIMUM DISPLACEMENTS (  CM  /RADIANS) (LOADING      1)
             MAXIMUMS    AT NODE
      X = -1.21106E-04      23
      Y = -1.15439E-03      28
      Z =  1.21106E-04       7
      RX=  0.00000E+00       0
      RY=  0.00000E+00       0
      RZ=  0.00000E+00       0
          STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO.     2
           CENTER OF FORCE BASED ON X FORCES ONLY (MMS ).
         (FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
                        X =  0.000000000E+00
                        Y =  0.199999999E+04
                        Z =  0.999999993E+03
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.    6
 TOTAL APPLIED LOAD     2 
   ***TOTAL APPLIED LOAD ( KNS  MMS  ) SUMMARY (LOADING     2 )
       SUMMATION FORCE-X =         900.00
       SUMMATION FORCE-Y =           0.00
       SUMMATION FORCE-Z =           0.00
      SUMMATION OF MOMENTS AROUND THE ORIGIN-
      MX=           0.00  MY=      900000.03  MZ=    -1800000.06
 TOTAL REACTION LOAD    2 
   ***TOTAL REACTION LOAD( KNS  MMS  ) SUMMARY (LOADING     2 )
       SUMMATION FORCE-X =        -900.00
       SUMMATION FORCE-Y =          -0.00
       SUMMATION FORCE-Z =           0.00
      SUMMATION OF MOMENTS AROUND THE ORIGIN-
      MX=           0.00  MY=     -900000.03  MZ=     1800000.06
   MAXIMUM DISPLACEMENTS (  CM  /RADIANS) (LOADING      2)
             MAXIMUMS    AT NODE
      X =  2.22892E-03       4
      Y =  7.83934E-04      44
      Z =  9.49033E-05      10
      RX=  0.00000E+00       0
      RY=  0.00000E+00       0
      RZ=  0.00000E+00       0
          STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO.     3
 TOTAL APPLIED LOAD     3 
   ***TOTAL APPLIED LOAD ( KNS  MMS  ) SUMMARY (LOADING     3 )
       SUMMATION FORCE-X =  0.0000000E+00
       SUMMATION FORCE-Y =  0.0000000E+00
       SUMMATION FORCE-Z =  0.0000000E+00
      SUMMATION OF MOMENTS AROUND THE ORIGIN-
      MX=  0.0000000E+00  MY=  0.0000000E+00  MZ=  0.0000000E+00
 TOTAL REACTION LOAD    3 
   ***TOTAL REACTION LOAD( KNS  MMS  ) SUMMARY (LOADING     3 )
       SUMMATION FORCE-X =  1.6182536E-11
       SUMMATION FORCE-Y = -5.0570426E-12
       SUMMATION FORCE-Z =  2.6296621E-11
      SUMMATION OF MOMENTS AROUND THE ORIGIN-
      MX=  5.5900954E-08  MY=  3.9459497E-08  MZ= -3.2882914E-09
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.    7
   MAXIMUM DISPLACEMENTS (  CM  /RADIANS) (LOADING      3)
             MAXIMUMS    AT NODE
      X =  1.10000E-01       9
      Y = -1.21497E-02       6
      Z =  1.61372E-02      24
      RX=  0.00000E+00       0
      RY=  0.00000E+00       0
      RZ=  0.00000E+00       0
          STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO.     4
           CENTER OF FORCE BASED ON Y FORCES ONLY (MMS ).
         (FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
                        X =  0.999999993E+03
                        Y =  0.299999998E+04
                        Z =  0.999999993E+03
 TOTAL APPLIED LOAD     4 
   ***TOTAL APPLIED LOAD ( KNS  MMS  ) SUMMARY (LOADING     4 )
       SUMMATION FORCE-X =           0.00
       SUMMATION FORCE-Y =         -95.76
       SUMMATION FORCE-Z =           0.00
      SUMMATION OF MOMENTS AROUND THE ORIGIN-
      MX=       95760.52  MY=           0.00  MZ=      -95760.52
 TOTAL REACTION LOAD    4 
   ***TOTAL REACTION LOAD( KNS  MMS  ) SUMMARY (LOADING     4 )
       SUMMATION FORCE-X =           0.00
       SUMMATION FORCE-Y =          95.76
       SUMMATION FORCE-Z =           0.00
      SUMMATION OF MOMENTS AROUND THE ORIGIN-
      MX=      -95760.52  MY=           0.00  MZ=       95760.52
   MAXIMUM DISPLACEMENTS (  CM  /RADIANS) (LOADING      4)
             MAXIMUMS    AT NODE
      X =  3.17652E-06      50
      Y = -3.35288E-05      28
      Z = -3.17652E-06      50
      RX=  0.00000E+00       0
      RY=  0.00000E+00       0
      RZ=  0.00000E+00       0
          STATIC LOAD/REACTION/EQUILIBRIUM SUMMARY FOR CASE NO.     5
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.    8
           CENTER OF FORCE BASED ON X FORCES ONLY (MMS ).
         (FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
                        X =  0.000000000E+00
                        Y =  0.199999999E+04
                        Z =  0.999999993E+03
           CENTER OF FORCE BASED ON Y FORCES ONLY (MMS ).
         (FORCES IN NON-GLOBAL DIRECTIONS WILL INVALIDATE RESULTS)
                        X =  0.999999993E+03
                        Y =  0.232356609E+04
                        Z =  0.999999993E+03
 TOTAL APPLIED LOAD     5 
   ***TOTAL APPLIED LOAD ( KNS  MMS  ) SUMMARY (LOADING     5 )
       SUMMATION FORCE-X =         900.00
       SUMMATION FORCE-Y =       -1995.76
       SUMMATION FORCE-Z =           0.00
      SUMMATION OF MOMENTS AROUND THE ORIGIN-
      MX=     1995760.67  MY=      900000.03  MZ=    -3795760.73
 TOTAL REACTION LOAD    5 
   ***TOTAL REACTION LOAD( KNS  MMS  ) SUMMARY (LOADING     5 )
       SUMMATION FORCE-X =        -900.00
       SUMMATION FORCE-Y =        1995.76
       SUMMATION FORCE-Z =           0.00
      SUMMATION OF MOMENTS AROUND THE ORIGIN-
      MX=    -1995760.67  MY=     -900000.03  MZ=     3795760.73
   MAXIMUM DISPLACEMENTS (  CM  /RADIANS) (LOADING      5)
             MAXIMUMS    AT NODE
      X =  1.10000E-01       9
      Y = -1.23568E-02       6
      Z =  1.61372E-02      24
      RX=  0.00000E+00       0
      RY=  0.00000E+00       0
      RZ=  0.00000E+00       0
   ************ END OF DATA FROM INTERNAL STORAGE ************
    57. PRINT JOINT DISPLACEMENTS LIST 8 9
  JOINT    DISPLACE LIST     8        
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.    9
   JOINT DISPLACEMENT (CM   RADIANS)    STRUCTURE TYPE = SPACE
   ------------------
 JOINT  LOAD   X-TRANS   Y-TRANS   Z-TRANS   X-ROTAN   Y-ROTAN   Z-ROTAN
      8    1     0.0000   -0.0002   -0.0001    0.0000    0.0000    0.0000
           2     0.0020    0.0000   -0.0000    0.0000    0.0000    0.0000
           3     0.0193   -0.0049    0.0089    0.0000    0.0000    0.0000
           4     0.0000   -0.0000    0.0000    0.0000    0.0000    0.0000
           5     0.0213   -0.0052    0.0088    0.0000    0.0000    0.0000
          10     0.0020   -0.0002   -0.0001    0.0000    0.0000    0.0000
      9    1     0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
           2     0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
           3     0.1100    0.0000   -0.0000    0.0000    0.0000    0.0000
           4     0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
           5     0.1100    0.0000   -0.0000    0.0000    0.0000    0.0000
          10     0.0000    0.0000    0.0000    0.0000    0.0000    0.0000
   ************** END OF LATEST ANALYSIS RESULT **************
    58. UNIT KNS METER
    59. PRINT SUPPORT REACTIONS
  SUPPORT  REACTION                   
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.   10
   SUPPORT REACTIONS -UNIT KNS  METE    STRUCTURE TYPE = SPACE
   -----------------
 JOINT  LOAD   FORCE-X   FORCE-Y   FORCE-Z     MOM-X     MOM-Y     MOM Z
      1    1     27.47    128.97    -27.47      0.00      0.00      0.00
           2    -72.24   -232.67     42.18      0.00      0.00      0.00
           3  -2022.70   -302.04  -1192.39      0.00      0.00      0.00
           4      1.52      6.63     -1.52      0.00      0.00      0.00
           5  -2065.94   -399.11  -1179.21      0.00      0.00      0.00
          10    -44.76   -103.70     14.70      0.00      0.00      0.00
      5    1      0.00    236.52    -54.44      0.00      0.00      0.00
           2    -62.32     11.42     -0.05      0.00      0.00      0.00
           3 -16410.02   7434.80  -2287.95      0.00      0.00      0.00
           4      0.00     11.97     -2.98      0.00      0.00      0.00
           5 -16472.33   7694.71  -2345.41      0.00      0.00      0.00
          10    -62.32    247.94    -54.49      0.00      0.00      0.00
     21    1     54.44    236.52     -0.00      0.00      0.00      0.00
           2   -159.92   -450.84     -0.00      0.00      0.00      0.00
           3  -3341.67  -2923.60  -1877.00      0.00      0.00      0.00
           4      2.98     11.97     -0.00      0.00      0.00      0.00
           5  -3444.18  -3125.95  -1877.00      0.00      0.00      0.00
          10   -105.49   -214.32     -0.00      0.00      0.00      0.00
     25    1     -0.00    438.06     -0.00      0.00      0.00      0.00
           2   -138.00      9.51     -0.00      0.00      0.00      0.00
           3 -19197.98   5248.66 -10975.25      0.00      0.00      0.00
           4     -0.00     21.34     -0.00      0.00      0.00      0.00
           5 -19335.98   5717.57 -10975.25      0.00      0.00      0.00
          10   -138.00    447.56     -0.00      0.00      0.00      0.00
     29    1    -54.44    236.52      0.00      0.00      0.00      0.00
           2   -170.27    431.34      0.00      0.00      0.00      0.00
           3   3902.73    512.05   3842.64      0.00      0.00      0.00
           4     -2.98     11.97      0.00      0.00      0.00      0.00
           5   3675.05   1191.87   3842.64      0.00      0.00      0.00
          10   -224.70    667.85      0.00      0.00      0.00      0.00
     41    1     27.47    128.97     27.47      0.00      0.00      0.00
           2    -72.24   -232.67    -42.18      0.00      0.00      0.00
           3   -891.15  -2739.86  -1598.54      0.00      0.00      0.00
           4      1.52      6.63      1.52      0.00      0.00      0.00
           5   -934.39  -2836.93  -1611.72      0.00      0.00      0.00
          10    -44.76   -103.70    -14.70      0.00      0.00      0.00
     45    1     -0.00    236.52     54.44      0.00      0.00      0.00
           2    -62.32     11.42      0.05      0.00      0.00      0.00
           3   -430.44   -752.46   -237.57      0.00      0.00      0.00
           4     -0.00     11.97      2.98      0.00      0.00      0.00
           5   -492.75   -492.56   -180.10      0.00      0.00      0.00
          10    -62.32    247.94     54.49      0.00      0.00      0.00
     49    1    -27.47    128.97     27.47      0.00      0.00      0.00
           2    -81.35    226.24     45.03      0.00      0.00      0.00
           3   -778.26   2073.77   1192.39      0.00      0.00      0.00
           4     -1.52      6.63      1.52      0.00      0.00      0.00
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.   11
   SUPPORT REACTIONS -UNIT KNS  METE    STRUCTURE TYPE = SPACE
   -----------------
 JOINT  LOAD   FORCE-X   FORCE-Y   FORCE-Z     MOM-X     MOM-Y     MOM Z
           5   -888.61   2435.62   1266.41      0.00      0.00      0.00
          10   -108.83    355.21     72.50      0.00      0.00      0.00
      9    1    -27.47    128.97    -27.47      0.00      0.00      0.00
           2    -81.35    226.24    -45.03      0.00      0.00      0.00
           3  39169.49  -8551.31  13133.66      0.00      0.00      0.00
           4     -1.52      6.63     -1.52      0.00      0.00      0.00
           5  39059.14  -8189.46  13059.64      0.00      0.00      0.00
          10   -108.83    355.21    -72.50      0.00      0.00      0.00
   ************** END OF LATEST ANALYSIS RESULT **************
    60. UNIT NEWTON MMS
    61. PRINT ELEMENT JOINT STRESS SOLID LIST 4 6
  ELEMENT  JOINT    STRESS   SOLID    
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.   12
 ELEMENT STRESSES        UNITS= NEWTMMS 
 -------------------------------------------------------------------------------
              NODE/           NORMAL STRESSES               SHEAR STRESSES
 ELEMENT LOAD CENTER      SXX       SYY       SZZ       SXY       SYZ       SZX
 -------------------------------------------------------------------------------
     4    1     21     -0.144    -0.449    -0.155    -0.006    -0.011     0.000
     4    1     25     -0.132    -0.368    -0.132    -0.011    -0.011     0.005
     4    1     26     -0.009    -0.377    -0.009    -0.003    -0.003     0.005
     4    1     22     -0.012    -0.449    -0.005     0.002    -0.018     0.009
     4    1     41     -0.152    -0.484    -0.152    -0.015    -0.015    -0.005
     4    1     45     -0.155    -0.449    -0.144    -0.011    -0.006    -0.000
     4    1     46     -0.005    -0.449    -0.012    -0.018     0.002     0.009
     4    1     42      0.007    -0.475     0.007    -0.023    -0.023     0.014
     4    1 CENTER     -0.075    -0.437    -0.075    -0.011    -0.011     0.005
              S1=     -0.070   S2=     -0.080   S3=     -0.438   SE=      0.363
              DC=       0.707    -0.041     0.707    -0.707    -0.000     0.707
     4    2     21      0.176     1.021     0.284     0.217     0.014     0.005
     4    2     25      0.154    -0.006     0.022     0.251     0.014    -0.029
     4    2     26     -0.028     0.053    -0.015     0.253     0.016    -0.002
     4    2     22     -0.054     1.031     0.103     0.219     0.012    -0.036
     4    2     41      0.189     1.034     0.321     0.258     0.038     0.029
     4    2     45      0.162    -0.006     0.054     0.223    -0.010    -0.005
     4    2     46     -0.225    -0.016    -0.051     0.221    -0.008    -0.026
     4    2     42     -0.247     0.976     0.071     0.255     0.036    -0.060
     4    2 CENTER      0.016     0.511     0.099     0.237     0.014    -0.015
              S1=      0.606   S2=      0.101   S3=     -0.082   SE=      0.617
              DC=       0.372     0.928     0.014    -0.106     0.027     0.994
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.   13
 ELEMENT STRESSES        UNITS= NEWTMMS 
 -------------------------------------------------------------------------------
              NODE/           NORMAL STRESSES               SHEAR STRESSES
 ELEMENT LOAD CENTER      SXX       SYY       SZZ       SXY       SYZ       SZX
 -------------------------------------------------------------------------------
     4    3     21      0.900     5.181     1.884     4.989     5.058     0.396
     4    3     25     -0.893    -5.740    -1.294     6.615     1.429    -1.229
     4    3     26      5.251    -3.282     3.647     5.654     0.468     3.274
     4    3     22      5.379     5.974     1.830     4.029     6.019     1.649
     4    3     41      2.148     9.507     2.550     0.107     5.891     1.229
     4    3     45      2.276     4.348     1.292    -1.518     0.596    -0.396
     4    3     46     -1.334     3.555     2.982    -0.558    -0.364     2.442
     4    3     42     -3.127     7.049    -0.756     1.067     6.851     0.816
     4    3 CENTER      1.325     3.324     1.517     2.548     3.244     1.023
              S1=      7.030   S2=      0.411   S3=     -1.275   SE=      7.604
              DC=       0.425     0.744     0.516     0.809    -0.055    -0.586
     4    4     21     -0.008    -0.024    -0.008    -0.001    -0.001    -0.000
     4    4     25     -0.008    -0.022    -0.008    -0.001    -0.001     0.000
     4    4     26      0.001    -0.022     0.001    -0.001    -0.001     0.000
     4    4     22      0.001    -0.024     0.001    -0.001    -0.001     0.000
     4    4     41     -0.008    -0.026    -0.008    -0.001    -0.001    -0.000
     4    4     45     -0.008    -0.024    -0.008    -0.001    -0.001    -0.000
     4    4     46      0.001    -0.024     0.001    -0.001    -0.001     0.000
     4    4     42      0.001    -0.026     0.001    -0.001    -0.001     0.000
     4    4 CENTER     -0.004    -0.024    -0.004    -0.001    -0.001     0.000
              S1=     -0.003   S2=     -0.004   S3=     -0.024   SE=      0.021
              DC=       0.705    -0.070     0.705    -0.707     0.000     0.707
     4    5     21      0.925     5.729     2.005     5.199     5.061     0.402
     4    5     25     -0.878    -6.136    -1.412     6.854     1.431    -1.254
     4    5     26      5.215    -3.629     3.624     5.903     0.481     3.277
     4    5     22      5.313     6.532     1.928     4.248     6.011     1.622
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.   14
 ELEMENT STRESSES        UNITS= NEWTMMS 
 -------------------------------------------------------------------------------
              NODE/           NORMAL STRESSES               SHEAR STRESSES
 ELEMENT LOAD CENTER      SXX       SYY       SZZ       SXY       SYZ       SZX
 -------------------------------------------------------------------------------
     4    5     41      2.176    10.031     2.710     0.349     5.913     1.254
     4    5     45      2.275     3.869     1.194    -1.307     0.579    -0.402
     4    5     46     -1.564     3.066     2.920    -0.356    -0.371     2.425
     4    5     42     -3.366     7.524    -0.677     1.299     6.864     0.770
     4    5 CENTER      1.262     3.373     1.537     2.774     3.246     1.012
              S1=      7.193   S2=      0.379   S3=     -1.400   SE=      7.856
              DC=       0.435     0.745     0.505    -0.764     0.008     0.645
     4   10     21      0.032     0.572     0.129     0.211     0.004     0.005
     4   10     25      0.022    -0.374    -0.110     0.240     0.004    -0.024
     4   10     26     -0.038    -0.325    -0.024     0.250     0.013     0.003
     4   10     22     -0.067     0.582     0.098     0.221    -0.006    -0.027
     4   10     41      0.036     0.550     0.168     0.242     0.023     0.024
     4   10     45      0.007    -0.455    -0.090     0.213    -0.016    -0.005
     4   10     46     -0.230    -0.465    -0.063     0.203    -0.006    -0.017
     4   10     42     -0.240     0.501     0.078     0.233     0.013    -0.046
     4   10 CENTER     -0.060     0.073     0.023     0.227     0.004    -0.011
              S1=      0.243   S2=      0.024   S3=     -0.230   SE=      0.410
              DC=       0.600     0.800    -0.017    -0.024     0.039     0.999
     6    1     23      0.329     0.394     0.413    -0.043    -0.127    -0.060
     6    1     27     -0.071    -1.739    -0.071    -0.099    -0.099    -0.005
     6    1     28     -0.676    -1.849    -0.676    -0.553    -0.553    -0.005
     6    1     24     -0.166     0.394     0.140    -0.498     0.328     0.051
     6    1     43     -0.097    -0.200    -0.097    -0.182    -0.182    -0.115
     6    1     47      0.413     0.394     0.329    -0.127    -0.043    -0.060
     6    1     48      0.140     0.394    -0.166     0.328    -0.498     0.051
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.   15
 ELEMENT STRESSES        UNITS= NEWTMMS 
 -------------------------------------------------------------------------------
              NODE/           NORMAL STRESSES               SHEAR STRESSES
 ELEMENT LOAD CENTER      SXX       SYY       SZZ       SXY       SYZ       SZX
 -------------------------------------------------------------------------------
     6    1     44     -0.259    -0.089    -0.259     0.273     0.273     0.106
     6    1 CENTER     -0.049    -0.287    -0.049    -0.113    -0.113    -0.005
              S1=      0.027   S2=     -0.044   S3=     -0.368   SE=      0.365
              DC=       0.631    -0.451     0.631    -0.707    -0.000     0.707
     6    2     23     -0.032     0.112    -0.001     0.030    -0.002     0.016
     6    2     27     -0.001    -0.025    -0.046     0.073    -0.013    -0.027
     6    2     28     -0.096    -0.003    -0.065     0.083    -0.003    -0.035
     6    2     24     -0.085     0.177     0.109     0.040    -0.012    -0.078
     6    2     43     -0.152     0.158     0.052     0.136    -0.023    -0.005
     6    2     47     -0.140    -0.041    -0.013     0.092     0.008    -0.049
     6    2     48     -0.496    -0.105    -0.119     0.082     0.019    -0.014
     6    2     44     -0.464     0.136     0.076     0.125    -0.033    -0.057
     6    2 CENTER     -0.183     0.051    -0.001     0.083    -0.007    -0.031
              S1=      0.081   S2=     -0.001   S3=     -0.213   SE=      0.263
              DC=       0.314     0.928    -0.202    -0.060     0.232     0.971
     6    3     23     -2.744    -0.535    -0.041    -0.327    -0.468     0.408
     6    3     27     -3.140    -0.556    -1.018     0.642     0.296    -0.560
     6    3     28      1.815     0.568     0.607     0.402     0.056     0.214
     6    3     24      1.900     0.279     0.654    -0.567    -0.228    -0.755
     6    3     43      0.636    -0.478     0.687    -0.031    -0.313     0.563
     6    3     47      0.721     0.942     0.191    -0.999     0.141    -0.405
     6    3     48     -0.136     0.128    -0.121    -0.759    -0.099     0.058
     6    3     44     -0.531    -1.602    -0.555     0.210    -0.073    -0.910
     6    3 CENTER     -0.185    -0.157     0.050    -0.179    -0.086    -0.173
              S1=      0.143   S2=     -0.010   S3=     -0.424   SE=      0.508
              DC=      -0.484     0.038     0.874    -0.507     0.802    -0.316
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.   16
 ELEMENT STRESSES        UNITS= NEWTMMS 
 -------------------------------------------------------------------------------
              NODE/           NORMAL STRESSES               SHEAR STRESSES
 ELEMENT LOAD CENTER      SXX       SYY       SZZ       SXY       SYZ       SZX
 -------------------------------------------------------------------------------
     6    4     23      0.000    -0.024     0.000    -0.000    -0.000    -0.000
     6    4     27      0.000    -0.024     0.000    -0.000    -0.000    -0.000
     6    4     28     -0.000    -0.024    -0.000    -0.000    -0.000    -0.000
     6    4     24     -0.000    -0.024    -0.000    -0.000    -0.000     0.000
     6    4     43      0.000    -0.024     0.000    -0.000    -0.000    -0.000
     6    4     47      0.000    -0.024     0.000    -0.000    -0.000    -0.000
     6    4     48     -0.000    -0.024    -0.000    -0.000    -0.000     0.000
     6    4     44     -0.000    -0.024    -0.000    -0.000    -0.000     0.000
     6    4 CENTER      0.000    -0.024     0.000    -0.000    -0.000    -0.000
              S1=      0.000   S2=     -0.000   S3=     -0.024   SE=      0.024
              DC=      -0.707     0.000     0.707     0.707    -0.002     0.707
     6    5     23     -2.448    -0.052     0.370    -0.340    -0.596     0.364
     6    5     27     -3.211    -2.343    -1.135     0.616     0.185    -0.592
     6    5     28      1.043    -1.309    -0.134    -0.068    -0.500     0.174
     6    5     24      1.649     0.826     0.902    -1.025     0.089    -0.782
     6    5     43      0.387    -0.545     0.642    -0.077    -0.518     0.443
     6    5     47      0.994     1.271     0.506    -1.034     0.106    -0.514
     6    5     48     -0.492     0.393    -0.406    -0.349    -0.578     0.096
     6    5     44     -1.255    -1.580    -0.739     0.608     0.167    -0.861
     6    5 CENTER     -0.417    -0.417     0.001    -0.209    -0.206    -0.209
              S1=      0.117   S2=     -0.208   S3=     -0.741   SE=      0.750
              DC=      -0.265    -0.255     0.930     0.705    -0.710     0.006
     6   10     23      0.296     0.507     0.412    -0.013    -0.128    -0.044
     6   10     27     -0.071    -1.764    -0.117    -0.025    -0.112    -0.032
     6   10     28     -0.773    -1.853    -0.741    -0.470    -0.556    -0.039
     6   10     24     -0.251     0.572     0.249    -0.458     0.316    -0.027
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.   17
 ELEMENT STRESSES        UNITS= NEWTMMS 
 -------------------------------------------------------------------------------
              NODE/           NORMAL STRESSES               SHEAR STRESSES
 ELEMENT LOAD CENTER      SXX       SYY       SZZ       SXY       SYZ       SZX
 -------------------------------------------------------------------------------
     6   10     43     -0.249    -0.043    -0.045    -0.046    -0.205    -0.121
     6   10     47      0.272     0.354     0.315    -0.034    -0.035    -0.109
     6   10     48     -0.356     0.289    -0.285     0.410    -0.479     0.037
     6   10     44     -0.724     0.047    -0.184     0.398     0.239     0.050
     6   10 CENTER     -0.232    -0.236    -0.050    -0.030    -0.120    -0.036
              S1=      0.011   S2=     -0.212   S3=     -0.316   SE=      0.289
              DC=      -0.080    -0.428     0.900     0.888    -0.441    -0.131
    62. FINISH
             *********** END OF THE STAAD.Pro RUN ***********         
               **** DATE= APR 21,2020   TIME= 15:40:57 ****
      EXAMPLE PROBLEM USING SOLID ELEMENTS                     -- PAGE NO.   18
         ************************************************************
         *   For technical assistance on STAAD.Pro, please visit    *
         *   http://www.bentley.com/en/support/                     *
         *                                                          *
         *   Details about additional assistance from               *
         *   Bentley and Partners can be found at program menu      *
         *   Help->Technical Support                                *
         *                                                          *
         *      Copyright (c) 1997-2017 Bentley Systems, Inc.       *
         *                http://www.bentley.com                    *
         ************************************************************