STAAD.Pro Help

D1.C.1 General Comments

The design philosophy embodied in the Load and Resistance Factor Design (LRFD) Specification is built around the concept of limit state design, the current state-of-the-art in structural engineering. Structures are designed and proportioned taking into consideration the limit states at which they would become unfit for their intended use. Two major categories of limit-state are recognized--ultimate and serviceability. The primary considerations in ultimate limit state design are strength and stability, while that in serviceability is deflection. Appropriate load and resistance factors are used so that a uniform reliability is achieved for all steel structures under various loading conditions and at the same time the chances of limits being surpassed are acceptably remote.

In the STAAD implementation of LRFD, members are proportioned to resist the design loads without exceeding the limit states of strength, stability and serviceability. Accordingly, the most economic section is selected on the basis of the least weight criteria as augmented by the designer in specification of allowable member depths, desired section type, or other such parameters. The code checking portion of the program checks that code requirements for each selected section are met and identifies the governing criteria.

The following sections describe the salient features of the LRFD specifications as implemented in STAAD steel design. A detailed description of the design process along with its underlying concepts and assumptions is available in the LRFD manual. However, since the design philosophy is drastically different from the conventional Allowable Stress Design (ASD), a brief description of the fundamental concepts is presented here to initiate the user into the design process.