Bentley WaterGEMS CONNECT Edition Help

Vapor Pressure

A liquid's vapor pressure limit is defined as the absolute pressure below which it flashes into its gas phase (vapor or steam for water) for the fluid temperature at which the system is operating. Vapor pressure is a fundamental parameter for any hydraulic transient analysis. Low transient pressures can cause a liquid to vaporize and, once one or more of these vapor pockets collapse later on, result in very large transient pressures, which may break pipes or other system components.

Note: For drinking-water systems at typical temperatures and pressures, HAMMER uses an approximate vapor pressure of -10.0 m or -14.2 psi (gauge) or -32.8 ft. by default, depending on the unit system in use. Typically, a liquid's vapor pressure can be obtained from tables (steam tables for water) given its temperature and absolute (not gauge) pressure. You might consider adjusting the vapor pressure if the elevation of your system is significantly different from mean sea level.

The vapor pocket collapse process is analogous to the well-known tip-cavitation phenomenon, which causes pitting damage at pump impellers; however, vapor pockets can be orders of magnitude larger than cavitation bubbles and can result in system-wide transients.

Note: To determine the impact of collapsing vapor pockets on your system, set the vapor pressure to a large negative value which you do not expect to occur, such as -1000 m, and run HAMMER with a different file name. Then reset the vapor pressure to its true value and run HAMMER again. The difference between these results is due to the effect of vapor pressure.

Heating or pressurizing a fluid increases its vapor pressure-an important consideration in industrial applications. Consider both operating temperature and pressure when determining a liquid's vapor pressure limit. (For example, water boils at a lower temperature at high altitudes due to the lower atmospheric pressure and lower absolute vapor pressure. Similarly, water boils at a higher temperature in a pressure cooker and this increased steam temperature accelerates the cooking process.) This is why the parameter library provided with HAMMER often provides values for liquids at different temperatures.